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Abstract Less than a decade ago, we proposed that

hybridization could serve as a stimulus for the

evolution of invasiveness in plants (Ellstrand and

Schierenbeck Proc Nat Acad Sci USA 97:7043–7050,

2000). A substantial amount of research has taken

place on that topic since the publication of that paper,

stimulating the symposium that makes up this special

issue. Here we present an update of this emergent

field, based both on the papers in this volume and on

the relevant literature. We reevaluate the lists that we

presented in our earlier paper of reports in which

hybridization has preceded the evolution of invasive-

ness. We discard a few cases that were found to be in

error, published only as abstracts, or based on

personal communication. Then we augment the list

from examples in this volume and a supplementary

literature search. Despite the omissions, the total

number of cases has increased. Many have been

strengthened. We add a list of cases in which there

has been evidence that intra-taxon hybridization has

preceded the evolution of invasiveness. We also

provide a number of examples from organisms other

than plants. We consider how our examples suggest

mechanisms whereby hybridization may act to stim-

ulate the evolution of invasiveness. Hybridization

does not represent the only evolutionary pathway to

invasiveness, but it is one that can explain why the

appearance of invasiveness often involves a long lag

time and/or multiple introductions of exotics.

Keywords Evolution � Gene flow �
Hybridization � Invasive plants � Weeds

Introduction

In 2000, we proposed that hybridization could serve

as a stimulus for the evolution of invasiveness in

plants (Ellstrand and Schierenbeck 2000). Lineages

with a history of hybridization may enjoy one or

more potential genetically-based benefits relative to

their progenitors, such as an increase in genetic

diversity. In our original paper, we supported our

hypothesis with a list of more than two dozen

examples of plant lineages known to have become

invasive after a history of intertaxon hybridization.
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Important to our argument and occupying much of

the text of that paper was our assertion that

invasiveness could evolve. For example, if hybrid-

derived genotypes enjoy increased fitness compared

to parental genotypes, that alone could play the

causative role in the appearance of invasiveness

(Ellstrand and Schierenbeck 2000). Although we

were not the first to propose the evolution of

invasiveness (e.g., Blossey and Nötzold 1995), the

idea was controversial enough to defend. But now,

the idea that invasiveness can sometimes result from

evolutionary change is no longer controversial (Lee

2002; Lambrinos 2004; Schierenbeck and Aı̈nouche

2005; Suarez and Tsutsui 2008).

Hybridization as an evolutionary stimulus for

invasiveness has given life to a new field of study.

Our original paper, about 7 years old at the time of

this writing, has been cited 332 times (Google

Scholar; verified 28 April 2008). The burgeoning

interest in the topic catalyzed the creation of a

symposium at the 2006 Annual Meeting of the

Botanical Society of America. Most of the papers in

this volume are derived from that symposium. They

present examples of the current state of the field that

is moving beyond simple documentation to experi-

mental and descriptive verification and hypothesis

testing about how invasiveness evolves in lineages

with a hybrid history.

Indeed, in the past few years a considerable

amount of research has been conducted on the topic

of hybridization as a catalyst for invasive evolution

not only in plants, but other organisms as well.

Several new plant examples have been found. Also,

some of the examples reviewed in our prior paper

have been the object of more thorough research that

has confirmed their hybrid origin (e.g., Hegde et al.

2006). In a few cases, more thorough study has

revealed that the hypothesis of hybrid origin is in

error (e.g., Houghton-Thompson et al. 2005; Burger

et al. 2006). In addition, there are a growing number

of studies finding evidence of intra-taxon hybridiza-

tion preceding the evolution of invasiveness (e.g.,

Culley and Hardiman 2008).

We define ‘‘intertaxon hybridization’’ here as

gene flow, either bi- or unidirectional, between two

named taxa, at any taxonomic level and including

species, subspecies, variety, or forma. We view

‘‘intrataxon hybridization’’ as gene flow among

populations of a single taxon at the species level

or below. Hybridization occurs along a continuum

of genetic separation from the population to the

species level. Significant differentiation varies with

both time and the idiosyncrasies of evolutionary

processes subsequent to allopatry, resulting in

unrecognized strong population genetic structure in

some cases and named taxonomic entities in others.

Despite the sometimes unnatural basis of human-

created taxonomic definitions (Levin 1979), hybrid-

ization and its accompanying evolutionary processes

have been accelerated by anthropogenic actions. In

the last few centuries, human transport and com-

merce have moved plants over long distances at

unprecedented rates, leading to increasing opportu-

nities for hybridization.

Here we review what is currently known regarding

the topic. We reevaluate and augment the examples

presented in our 2000 paper. Next, we use our new

dataset to give insight into the mechanisms by which

invasiveness may evolve. Finally, we examine

recently published cases suggesting that hybridization

between previously isolated populations of the same

species has also lead to the evolution of new

invasives.

Materials and methods

We sought well-documented examples of the evolu-

tion of invasiveness in plants after a spontaneous

hybridization event. Our starting point was our list of

examples in our 2000 paper. In order to be consistent,

we use the same criteria but we removed cases

subsequently found to be in error and then augmented

our new list with a literature search.

We used the following criteria for choosing our

examples:

(i) More evidence than intermediate morphology

must be available to support the hybrid origin

of the invasive lineage. Intermediate morphol-

ogy does not necessarily support the hypothesis

of hybridity (Rieseberg and Ellstrand 1993).

Species-specific genetically based traits such as

chromosomes, isozymes, and/or DNA-based

markers provide more reliable evidence for

hybrid parentage. The hypothesis also can

receive support from comparison of artificially

synthesized hybrids with the putative
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spontaneous hybrids or from the relative sterility

of the putative hybrids compared with that of the

parental species.

(ii) The hybridization event preceding the evolution

of invasiveness must be spontaneous. Many

artificial hybrids, especially ornamentals, have

escaped from cultivation to become naturalized

invasives (e.g., certain mints, comfrey, poplars,

and watercress; cf. ref. Stace 1975).

(iii) The hybrid derivatives must be established as

a novel, stabilized lineage and not simply as

transient, localized hybrid swarms. In some

cases, genetic or reproductive mechanisms

may stabilize hybridity (e.g., allopolyploidy,

permanent translocation heterozygosity, aga-

mospermy, and clonal spread; cf. ref. Grant

1981). Some hybrid derivatives have become

new, reproductively isolated, recombinant

species. In other cases, introgression may be

so extensive that the hybrid lineage swamps

out one or both of its parents, becoming a

coalescent complex.

(iv) The new lineage must exhibit invasiveness. For

the purposes of our analysis, we define inva-

sive populations as those that are capable of

colonizing and persisting in one or more

ecosystems in which they were previously

absent. The minimal criterion of invasiveness

for our hybrid derivative is that it must replace

at least one of its parental taxa or occupy a

habitat in which neither parent is present. We

hold to this criterion for those few cases in

which one parent is itself invasive. We recog-

nize that this definition is highly restrictive, but

it sets a clear limit so that we are not tempted to

‘‘pad’’ our list. We recognize that the real

definition of invasiveness is much broader, but

one that is ‘‘fuzzy’’ for the purpose of our task

here.

(v) We strengthened our list of examples compared

to our earlier analysis by excluding those cases

published only as abstracts or based solely on

personal communication.

We did not restrict ourselves to examples of

hybridization involving one or more non-natives,

because the evolution of invasiveness by hybridi-

zation should be independent of the geographical

source of the parental material. Despite the fact that

our literature search is thorough, we caution that our

list may be far from exhaustive, especially because

the field is now lively, and new studies are arriving at

an increasing pace.

Results and discussion

Our 2000 paper included 28 examples in which

hybridization preceded invasiveness, four have been

eliminated due to lack of support and 11 new

examples have been added. In addition, eight exam-

ples have been bolstered by new data. In all, we

found 35 examples representing 16 plant families in

which hybridization preceded invasiveness; these

examples are detailed in Tables 1 and 2. Examples

of invasive lineages with a putative hybrid origin

(e.g., Lonicera 9 bella and Oenothera wolf-

ii 9 Oenothera glazioviana) were removed because

they did not sufficiently meet our criteria, mostly

because only morphology has been offered to support

their hybridity.

For some of our examples, the hybrid-derived

lineage has achieved a taxonomic epithet (Table 1).

In other cases, a new invasive lineage has been

identified and studied but not yet named, to our

knowledge (Table 2). In the associated Tables, we

give the parental taxa, plant family, the hybrid

derivative’s habit, its site of origin, and the nature

of the evidence supporting a history of hybridization

for the new lineage. We give one or two good

supporting references for each example. In many

cases, the best reference is an article or review that

cites many supporting sources of empirical research.

Finally, we present how the novel lineage is main-

tained and indicate the scope of its invasiveness.

Despite discarding the weak or disproven cases

presented in our earlier article, our new list represents

about a 30% increase in examples in less than a

decade. The trends that we identified from our

original list tend to be reinforced in our new sample.

Most of our examples are herbaceous and most are

perennial. As noted by Grant (1981) and in our

original paper these characteristics are frequently

correlated with a tendency for frequent spontaneous

hybridization.

In our previous paper (Ellstrand and Schierenbeck

2000) we suggested and discussed four different
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mechanisms that could contribute to the evolution of

invasiveness in hybrid-derived lineages:

(1) Evolutionary novelty

(2) Increased genetic variation

(3) Fixed heterosis

(4) Dumping genetic load

Although these mechanisms are not fully mutually

exclusive, how a lineage is stabilized may give a clue

to which of these are more likely.

Interestingly, a high frequency (ca. 80%) of the

unnamed hybrid-derived invasive lineages listed in

Table 2 has stabilized via more-or-less freely recom-

bining coalescent complexes. Option 3, fixed

heterosis, cannot be a mechanism for these cases. In

contrast, list of novel in Table 1, named hybrid-

derived invasive taxa is dominated by cases in which

allopolyploidy and/or clonal growth are the modes of

hybrid stabilization.

Why the difference between the two groups? One

possible explanation is that the parents of the

examples in Table 2 may be more closely related

hybridizing taxa than those in Table 1. Isolating

barriers are weak or non-existent. Those hybrid

lineages can intermate with their parents. But, for

evolutionarily well-differentiated taxa, isolating bar-

riers are much stronger. Hybrids are often highly

sterile. Allopolyploidy and clonality would stabilize

lineages that would suffer sterility as F1 hybrids

while fixing hybridity and novelty (Grant 1981) and

as demonstrated in the case of Spartina anglica

(Aı̈nouche et al. 2008). In virtually all of our

examples in both Tables, and consistent with Ander-

son’s (1948) prediction that hybrids will perform

better in disturbed habitat, invasive hybrid lineages

are most persistent in human altered environments.

Overcoming self-incompatibility through hybrid-

ization has resulted in the establishment of invasive

genotypes in three examples presented in this special

issue. The genetic material to alleviate allelic

incompatibility developed via interspecific hybrid-

ization in Spartina (Sloop et al. 2008) and through

intervarietal hybridization between graft and root-

stock in abandoned orchards of Pyrus (Culley and

Hardiman 2008). Senecio squalidis, a diploid, hybrid

and self-incompatible species, is the parent to three

additional species via hybridization with a native

self-compatible species, S. vulgaris (Abbott et al.

2008). Conversely, there are likely fewer chances for

hybridization in predominantly selfing taxa. Whether

hybridization is a lesser threat in invasive taxa that

are predominantly selfing due to their potential for

outbreeding depression remains to be tested. Recent

theoretical (Taylor and Hastings 2005) and empirical

studies (Taylor et al. 2004) have demonstrated the

importance of Allee effects (mate shortage, self-

incompatibility) in the dynamics of biological

invasions.

Table 3 provides examples of intraspecific hybrid-

ization that have resulted in invasive genotypes.

Novel genotypes can be created via the mating of

repeatedly introduced cultivars bred for divergent

agronomic or horticultural traits (e.g., Phalaris

arundinacea, Pyrus calleryana). Likewise, invasive

lineages have been shown to be simply the result of

fortuitous mating among individuals that evolved in

geographically separated, genetically differentiated

populations (e.g., Schinus terebinthifolius).

A growing number of other studies suggest a

possible relationship between intraspecific hybridiza-

tion and invasiveness. Many of these systems are

worth further exploration (e.g., Alliaria petiolata

(Durka et al. 2005), Avena barbata (Latta et al.

2007), Centaurea diffusa (A. Blair, personal commu-

nication), Cirsium arvense (Slotta et al. 2006),

Passiflora alata (Koehler-Santos et al. 2006), and

Phragmites australis (L. Meyerson, personal

commuincation).

Evolution of invasiveness can arise from mecha-

nisms other than hybridization. In certain cases,

researchers have sought hybridization as a potential

cause of invasiveness but no evidence of hybridiza-

tion was found. For example, California’s recently

evolved weedy rye had been thought to be an

interspecific hybrid between cultivated rye, Secale

cereale, and a wild perennial, S. montanum (Suneson

et al. 1969). However, Burger et al. (2006) conducted

a genetic analysis of Secale individuals at 17

molecular loci, comparing the weedy populations

with their putative parents. They found no evidence

for an interspecific hybrid origin for weedy California

rye. Rather they found evidence for a monophyletic

origin from the cultivated species. Likewise, some

studies have found no evidence of intraspecific

hybridization. Wolfe et al. (2007) experimentally

tested whether intraspecific hybridization could

account for evolution of invasiveness in North

American populations of Silene latifolia. They
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created interpopulation hybrids and grew them in a

common garden with plants from within-population

crosses. They found no differences in size, reproduc-

tive output or survival. Molecular genetic analysis

has sought but not supported intraspecific hybridiza-

tion in invasive populations of Clidemia hirta in

Hawaii (DeWalt and Hamrick 2004) and Ligustrum

robustum in the Mascarene Islands (Milne and Abbott

2004).

Ellstrand and Schierenbeck (2000) cautioned that

hybridization may be only one of many possible

explanations for invasive ability. In this volume,

Whitney et al. (2008) have tested this relationship

explicitly by asking whether plant families more

prone to hybridization (Ellstrand et al. 1996) contain

a correspondingly high number of invasive species.

In their extensive analysis of four regional floras and

two global databases, they found that plant families

prone to hybridization do not contain more invaders

than those families not prone to hybridization. The

lack of correlation between hybridization and inva-

siveness in a phylogenetic context emphasizes the

idiosyncratic nature of invasive species in their new

range.

Human-mediated movement of propagules around

the globe has resulted in the hybridization of all kinds

of organisms, not just plants, creating a full taxo-

nomic array of newly evolved invasives. Some of the

most dramatic non-plant examples of evolution of

invasiveness after hybridization among historically

allopatric taxa are detailed in Table 4. Clearly, the

lessons that can be learned from plants can apply to

other pest organisms, including those that cause

disease.

Management implications and research needs

There is little doubt that hybridization is an important

evolutionary mechanism in plants. The concern

regarding hybridization and the subsequent evolution

of invasiveness is not whether it can happen, but the

speed with which humans accelerate this evolutionary

process. Human mediated gene flow between cong-

eners or conspecific populations is a form of biotic

homogenization both at the genetic and community

level (Olden et al. 2004). However, little is known

about how non-native taxa or the spread of their

foreign alleles to native taxa may affect localT
a
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adaptation of a species, community composition, or

ecosystem function (Levine et al. 2003), even for the

most dramatic invasions (Dukes and Mooney 2004;

but see Brusati and Grosholz 2006). The role of gene

flow from non-native populations in changing eco-

system relationships has not been examined

(Sweeney et al. 2004).

The human-mediated movement of non-native

plant genotypes is particularly important at the

interface of the urban/natural environment. One of

the common sources of introduced species that

impact native ecosystems are plants intentionally

introduced for ornamental and other horticultural

purposes (Anderson et al. 2006). Despite the

acknowledgement that many popular horticultural

species readily hybridize with their native congeners,

until very recently, there has been little regard for

their genetic impact to native taxa or the invasive

ability of their hybrid offspring. For example,

hybridization is occurring between cultivars and their

native counterparts within the genera Quercus, Pyrus,

Acer, Malus, Platanus, and Cornus (Culley and

Hardiman 2008; Coart et al. 2003; Petit 2004).

Ecological, genetic, and evolutionary study of such

systems will provide baseline information about the

generality of problems caused by hybridization

between exotics and natives. In particular, the rate

at which horticultural genotypes and their hybrid

derivatives invade native populations will provide

new insights into both the immediate as well as the

long term impacts human activities within urban and

suburban areas may have on the genetic structure of

populations in surrounding wildland areas.

Understanding the importance of fitness effects

across spatial scales first requires the identification of

genomic differences and an assessment of their

geographic dispersion (Cronn and Wendel 2004).

Olden and Rooney (2006) emphasize the need for the

documentation of taxonomic homogenization by

tracking taxa through space and time. The distribu-

tion of genetic variation in populations of invasive

species, and the relative invasiveness of different

genotypes remains elusive with few definitive studies

outside of agricultural systems (but see Saltonstall

2003; Gaskin and Schaal 2002; Gaskin and Kazmer

2008; Sloop et al. 2008). Of particular need in

understanding the dynamics of adaptation and spread,

is an assessment of the molecular population genetics

of regulatory loci (Purugganan 2000). NaturalT
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selection on phenotypic variants, which will be

considerable in generations after interspecific hybrid-

ization, may provide positive feedback on spread rate

(Hall et al. 2006). More effective management will be

improved through an assessment of the vulnerability

of developmental stages and the susceptibility of

different genotypes to management regimes.

Important questions remain regarding interactions

among the genetic, environmental, and anthropogenic

phenomena responsible for the spread of invasive

hybrid genotypes. The information gained is of both

practical and basic significance. For example, deter-

mining the population genetic structure of chloroplast

and nuclear alleles for most invasive plant hybrid

lineages can be used to estimate the relative contri-

butions to migration by pollen versus that by seed

(e.g., Ennos 1994; McCauley 1997). Managers can

use such information to determine whether a wave of

invasion is due primarily to seed or recurrent

hybridization.

Significant advances have been made in modeling

the likelihood of hybrid formation, differential rates

of spread among hybrid genotypes, and the impact of

hybridization on the genetic structure of populations

(Hall et al. 2006). Hall and Ayres (2008 not in

references) provide a summary of recent advances

and needs in the development of predictive models

for invasive species. Notably needed is the develop-

ment of models on which to base management

strategies when there is a pair of native and non-

native species hybridizing at multiple locations.

Hybrid genotypes originating from native and non-

native populations present a major obstacle for

managers particularly in the context of biological

control, yet no models have been developed for this

scenario. For example, despite the presence of two

introduced moth species on introduced Salsola tragus

that were experimentally established as effective

biocontrol agents, they are ineffective in controlling

the invasive genotypes (Ayres et al. 2008). Similarly,

the leaf-feeding chrysomelid beetle provides effective

control of some populations of saltcedar, but not

others (Gaskin and Kazmer 2008).

The role of soil seedbanks as a source of genetic

material that may result in hybridization between

previously allopatric populations has not been ade-

quately addressed in plant invasions. Seed dormancy

is an adaptive trait and although dormancy periods

are well-described for many agricultural weeds

(Baskin and Baskin 1998; Dekker 1997, 1999),

virtually nothing is known about the importance of

this trait or whether it is important for the introduc-

tion of novel genetic diversity in invasive plant

species. Seed viability for Cytisus scoparius can be as

long as 60 years; a 2- or 3-year old plant can produce

up to 18,000 seeds/year (Parker and Kareiva 1994).

Thus, gene flow from seed banks may be consider-

able. Chromolaena odorata (triffid weed), a shrub

native to the neotropics and invasive throughout the

Pacific Islands, is quite aggressive and even the

occurrence of an occasional seedling 6 years past an

eradication effort may provide a mechanism by

which to introduce genetic variation not previously

found in native populations (Waterhouse and Zeimer

2000).
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Caulerpa racemosa (Forsskål) J. Agardh (Caulerpales,

Chlorophyta) in the Adriatic Sea. Eur J Phycol 42:113–120

O’Hanlon PC, Peakall R, Briese DT (1999) Amplified frag-

ment length polymorphism (AFLP) reveals introgression

in weedy Onopordum thistles: hybridization and invasion.

Mol Ecol 8:1239–1246

Olden JD, Rooney TP (2006) On defining and quantifying

biotic homogenization. Global Eco Biogeogr 15:113–120

Olden J, Poff NL, Douglas MR, Douglas ME, Fausch KD

(2004) Ecological and evolutionary consequences of

biotic homogenization. Trends Ecol Evol 19:18–24

Parker IM, Kareiva P (1994) Assessing the risk of invasion in

genetically modified crops: an ecological perspective. In:

Jones DD (ed) The biosafety results of field tests of

genetically modified plants and microorganisms. Univer-

sity of California Division of Agriculture and Natural

Resources, Oakland, pp 467–470

Paterson AH, Schertz KF, Lin YR, Liu SC, Chang YL (1995)

The weediness of wild plants: molecular analysis of genes

influencing dispersal and persistence of johnsongrass,

Sorghum halepense (L.) Pers. Proc Natl Acad Sci USA

92:6127–6131

Petit RJ (2004) Biological invasions at the gene level. Div

Distrib 10:159–165

Pinto MA, Rubink WL, Patton JC, Coulson RN, Johnston JS

(2005) Africanization in the United States: replacement of

feral European honeybees (Apis mellifera L.) by an

African hybrid swarm. Genetics 170:1653–1665

Purugganan MD (2000) The molecular population genetics of

regulatory genes. Mol Ecol 9:1451–1461

Rieseberg LH, Ellstrand NC (1993) What can molecular and

morphological markers tell us about plant hybridization?

Crit Rev Pl Sci 12:213–241

Rieseberg LH, Carter R, Zona S (1990) Molecular tests of the

hypothesized hybrid origin of two diploid Helianthus
species. Evolution 44:1498–1511

Saltonstall K (2003) Microsatellite variation within and among

North American lineages of Phragmites australis. Mol

Ecol 12:1689–1702

Schierenbeck KA, Aı̈nouche ML (2005) Evolutionary conse-

quences of plant invasions. In: Cadotte MW, McMahon

SM, Fukami T (eds) Conceptual ecology and invasions

biology: reciprocal approaches to nature. Kluwer Press,

The Netherlands, pp 193–221

Schierenbeck KA, Symonds VV, Gallagher KG, Bell J (2005)

Genetic variation and phylogeographic analyses of two

species of Carpobrotus and their hybrids in California.

Mol Ecol 14:539–547

Sloop CM, Ayres DR, Strong DR (2008) The rapid evolution

of self- fertility in Spartina hybrids (Spartina alterniflora
x foliosa) invading San Francisco Bay, CA. Biol Invasions

(this issue). doi:10.1007/s10530-008-9385-0

Slotta TAB, Rothhouse J, Horvath DP, Foley ME (2006)

Genetic diversity of Cirsium arvense (Canada thistle) in

North Dakota. Weed Sci 54:1080–1085

Smoot LM, Franke DD, McGillivary G, Actis LA (2002)

Genomic analysis of the F3031 Brazilian purpuric fever

clone of Haemophilus influenzae biogroup Aegyptius by

PCR-based subtractive hybridization. Infect Immun

70:2694–2699

Stace CA (1975) Hybridization and the flora of the British

Isles. Academic Press, London

Stace CA (1991) New flora of the British Isles. Cambridge

University Press, Cambridge

Suarez AD, Tsutsui N (2008) The evolutionary consequences

of biological invasions. Mol Ecol 17:351–360

1104 K. A. Schierenbeck, N. C. Ellstrand

123

http://dx.doi.org/10.1007/s10530-008-9385-0


Sukopp U, Pohl M, Driessen S, Bartsch D (2005) Feral beets—

with help from the maritime wild? In: Gressel J (ed) Crop

ferality and volunteerism. Taylor & Francis, Boca Raton,

pp 45–57

Suneson CA, Rachie KO, Khush GS (1969) A dynamic pop-

ulation of weedy rye. Crop Sci 9:121–124

Sweeney BW, Bott TL, Jackson JK, Kaplan LA, Newbold JD,

Standley LJ, Hession WC, Horwitz RJ (2004) Riparian

deforestation, stream narrowing, and loss of stream

ecosystem services. Proc Nat Acad Sci USA 101:

14132–14137

Taylor CM, Hastings A (2005) Allee effects in biological

invasions. Ecol Lett 8:895–908

Taylor CM, Davis HG, Civille JC, Grevstad FS, Hastings A

(2004) Consequences of an allee effect in the invasive of a

Pacific estuary by Spartina alterniflora. Ecology 85:

3254–3266

Urbanska KM, Hruka H, Landolt E, Neuffer B, Mummenhoff

K (1997) Hybridization and evolution in Cardamine
(Brassicaceae) at Urnerboden, Central Switzerland: Bio-

systematic and molecular evidence. Plant Syst Evol

204:233–256

Viard F, Bernard J, Desplanque B (2002) Crop-weed interac-

tion in the Beta vulgaris complex at the local scale: allelic

diversity and gene flow within sugar beet fields. Theor

Appl Genet 104:688–697

Waterhouse B, Zeimer O (2002) On the brink: status of chro-

molaena odorata in Northern Australia. In: Zachariades C,

Muniappan R, Strathie LW (eds) Proceedings of the fifth

international workshop on biological control and man-

agement of chromolaena odorata. Durban, South Africa,

pp 66–70, 23–25 October 2000 ARC-PPRI

Whitney KD, Ahern JR, Campbell LG (2008). Hybridization-

prone plant families do not generate more invasive

species. Biol Invasions (this issue). doi:10.1007/s10530-

008-9390-3

Williams DA, Overholt WA, Cuda JP, Hughes CR (2005)

Chloroplast and microsatellite DNA diversities reveal the

introduction history of Brazilian peppertree (Schinus
terebinthifolius) in Florida. Mol Ecol 14:3643–3656

Wolfe LM, Blair AM, Penna BM (2007) Does intraspecific

hybridization contribute to the evolution of invasiveness?

An experimental test. Biol Invasions 9:1387–3547

Hybridization and the evolution of invasiveness in plants and other organisms 1105

123

http://dx.doi.org/10.1007/s10530-008-9390-3
http://dx.doi.org/10.1007/s10530-008-9390-3

	Hybridization and the evolution of invasiveness in plants and other organisms
	Abstract
	Introduction
	Materials and methods
	Results and discussion
	Management implications and research needs
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


